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SECTION I

INTRODUCTION

The concept of a well—posed problem was formulated by Hadamard

early in this century. In broad terms , a problem is well—posed in

the sense of Hadamard if it has a unique solution which depends con-

tinuously on the data of the problem. Specifically , if T is a trans-

formation from a metric space X into a metric space Y, then the prob-

lem

T x — b  (1)

S 

- is said to be well—posed if

( 1) for each bcY there is a solution xcX ,

( ii) the solution x is unique, and

(iii) the solution x depends continuously on the “data” b.

A problem which is not well—posed is called ‘ill—posed .” Ill—

posed problems have been intensively studied during the last fifteen

years , especially by Soviet mathematicians (see f12],(23]), because

of their importance in many engineering applications (see (111 and

S 
El4] for specific areas of Air Force interest). In this report we

will be concerned with linear ill—posed problems, that is, we will

study the problem (1) where T is a linear operator on Hu bert space. 
S

A typical problem of this type is the integral equation of the first

kind

I
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- b(t) (2)

where the kernel k is a member of L2([a,d)x[a ,d] )  (the spa ce of

Lebesgue square integrable functions on the rectangle [a ,dlx (a ,d ) )

and b L 2(a,d] (we allow a or d to be infinite). Such equations are

notoriously ill—posed. For example, if k(s ,t) — t + c, then (2) can

have a solution only If b is a linear function , violating (i). If

k(s,t) — sin(s) and b(t) — 2, then by the well—known orthogonality

S 
relations ,

f
0

k(s ,t)~~ + sin(ms))ds - b(t), m - 2,3,...

which violates (ii). Far more serious is the fact that (iii) is

violated for equations of type (2). Indeed , by the Riemann—Lebesgue

lemma, for arbitrary A ,

fk(s,t) A sin (mlTs)ds -i 0 as in -
~

and hence solutions do not depend continuously on the data.

Numerical methods for analyzing ill—posed linear problems are

particularly important because a large number of engineering prob—

lemss have the form (2). Consider for example the one dimensional

heat equation

2
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- , u(x ,0) - h(x) .
ax

It is well known that the temperature distribution f(x) — u(x,T) at

some time T ) 0 can be expressed in terms of the initial temperature

distribution h~x) by

f(x) - ~ fexp(_ (x_T)2/(4T))h(T)dT.
2/~~

• The “inverse” problem of determining the initial temperature distri—

bution h (x) , given the distribution f (x)  at the later t ime , is of

• 
~~

- considerable interest and is an ill—posed problems of type (2).

Ano ther problem of type (2) is the numerical differentiat ion

• problem. The nth derivative of a given function b(t) (with b(O) -

b~~(0) — ... — b~~~~~(0) — 0) satisfies

(n-i)! (~~S)
n l X(S)dS - b(t).

This problem has been studied extensively within the context of ill—

posed problems by Cullums [3], Franklin [5] and others.

Another example is afford ed b~ the work of Lee [13] and Pro—

vencher [18] on the determinatior. of the molecular weight distribution

of a solute from centrifuge data. In this example the molecular

weight distribution f(m) satisfies

~ 2 2 - A m x
U(x) — f  A is e f (m)dm

l — e
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where U is a function which is proportional to the measured con—

centratlon gradient and A is a constant which is proportional to the

square root of the rotor speed .

As a fina l example , we give the two dimensional integral equa-

tion

f  p(x , y )  dx~ dy~ — — f~ (x ,y)  —

+ (y—y~ ) I

which was studied by Singh and Paul [21) and concerns the pressure

dis t r ibut ion in the contac t of nonconforming elastic bodies.

In teg ra l equat ions of the first kind also arise in the deter-

minat ion  of the shape of conducting bodies from backscat t ered elec-

tromagnetic radiation ([16],[17]), seismic prospecting [2), antenna

theory [4 1, remote probing of the atmosphere ([221,1241), medical.

to mog rap hy [61 and system identification ([l),[15]).

~1
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SECTION II

GENERALIZED INVERSES

We will henceforth assume that and are Hu bert spaces and

that T:H
1 

-

~ 
is a bounded linear operator. The inner product and

norm in each space will be denoted by ( ,.) and I~H~ 
respectively.

S S 
The range and nulispace of T will be denoted by R(T) and N(T), re-

spectively . Our task is to solve the ill—posed problem (1) for

xcH i given bcH 2 . Of course , if b lR(T) then (1) is violated and there

is no solution. In such a case we might reasonably adopt the more

flexible attitude of replacing b in the right hand side of (1) by

the point in R(T) which is nearest to b. However, if R(T) is not

closed , such a closest point may not exist. We are then led to accept

as a generalized solution any vec tor ucH
1 
which satisfies

Tu Pb (3)

where P is the projection of I4
~ 

onto R(T), the closure of R(T). Any

vector u satisfying (3) is called a least squares solution of equa-

tion (1). We note that a least squares solution will exist for any

vector b whose projection onto R(T) lies In R(T), i.e., for all vec-

tors b in the dense subapace R(T)O R(T? of H2. It is not diffi-

cult to see tha t least sq uares solu tions may also be charac terized

as vectors u~H1 
which satisfy either of the conditions

• I l T u — b l i  < — b~ f , for all x c H1, (4 )

or * *TTu T b  I~5)

S

~
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where 1* is the adjoint of ‘r (see [7 )  fo r  a proof of this and other

simple facts pertaining t this section).

W~ have seen that if we consider least squares solutions in—

stead of traditional solutions, then difficulty (I) is to a certain

extent obviated . The problems of nonuniqueness, however , remains at

this point. Indeed , if N(T) # (0) then there may be infinitely many

least squares solutions , for It u is a least squares solution, then

so is u+v for any vcN (T). Fortunately , there is a natural way of s~-

lecting a least squares solution which is unique in a certain sense.

We see from (5) that the set of all least squares solutions is a

closed convex set. This set therefore contains a unique vector of

smallest norm and it is this vector which we will accept as the

unique generalized solution of equation (1). Let ,~ (T~ ) R(T) ~~ R(T?:

The operator

T~ :~~( T )  -
~ H 1

which associates with each b t- ~~(T t ) the unique least squares sol-

ution of equation (1) with minimal norm Is called the generalized

S 

inverse of T. It is not difficult to show that T is a closed linear

• operator (see [ 7 ] ) .  If  Tt were continuous then problems ( i ) ,  ( i i) ,

(iii) would be solved , at least for bcDtT
t). But alas this is not

the case . It is not d i f f i c u l t  to show that  T F is continuous if and

only if R(T) Is closed . Unfortunately the range of an integral op—

erator is closed if and only if its kernel is degenerate (see 17 1) .

We are therefore led to seek approximations to T
t by bounded l inear

6
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operators. Such approximations, when applied to b , are called reg—

ularizors of equation (1). 
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SECTION III

A GENERAL METHOD

* -. *We will denote the operator T T by T and the operator TT by

i~. Note that T and ~ are self adjoint linear operators whose spec—

tra lie in the Interval [0 , 1 1 T h
2 ) .  If 0 ~ o( ~ ) ( the spectrum of

• - t -—l~~ -

T), then by (5) we have T — T T . In general, however, 0 c

S but thi s last equation nevertheless leads us to seek approximations

*to T by operators of the form U(T)T where U is a continuous func-

tion on [0j~T hl
2] which approximates the function f(t) — t~~ in

some sense. Specifically, we will consider a family (net) of real

valued functions {U
8
(t):BcS}, indexed by a subset S of the positive

real numbers with o~cS , where each is continuous on fO , II T J J
2
J

and such that

kUB(t)I < M  for all t and B (6)

and 1
U
B
(t) -

~ t as ~ -* for each t ~ 0. ( 7)

The following is proved In [7].

•t. •- * I
Theorem 1. Suppose bc~ (T ) and let x

B 
— U

8
(T)T b. Then x

8 
-
~~ T b

as B - ’~ °°.

To this we now add ,

Theorem 2. If b~~(T
t) ,  then {X

B

} h~s no weakly convergent subnet.

Proof. Suppose {X
B
.} is a subuet of {x

8
} which converges weakly

to zcH1, denoted z. By the ~‘ak continuity of bounded linear

operators we then have Tx Tz.
B

— — 

-

~~
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Now ,

Pb — Tx~ — Pb — TU~~(T)T *b

— Pb - Th
b
(l’)Pb.

However, by (6) and (7). the operator I1J
B

(T) converges polntwlse to

the projection of onto NC1)
1 

— N(T*)
L 

— R(T). Therefore

Pb — Tx~~ 0. It then follows that Pb — Tz , a contradiction. II

In the proof above we have used the fact that U~ (T)T —

a Tt I
1~
(T). This is easy to see if U~ Is a polynomial. In the general

~

ase the identity follows from the Weierstrass approximation theorem .

Using the fact that bounded sets in Hilbert space are weakly corn—

p ac t , we ha ve:

corollary 3. If b~~~(T
1 ) ,  then I 1x ~~H -

~ as ~

Theorem 1 and Corollary 3 demonstrate d ramat ica l ly  the

unequivocal  na ture  of the approximations {x
8

}.

Several authors  have established rates of convergence for

va r i o u s  approximat ions  to T t b under the s t ronger  assumption th at

Ph R(T) (see [201,[9],[1O1). We see from Corol la ry  3 that  the

very least we must require to get convergence at all is that

Pb R(T). In order to strengthen this condition only slightly and

thereby obtain a rate of convergence we note tha t

R(T)  — R(TP )
N(Tt 

S

and , En t h e  potntwise sense,

10
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It therefore seems reasonable to replace the hypothesis b i

i.e.,, Pb £ R( T) , by the hypothesis Pb a- R(rr”) for some v 0. In

order to gauge the rate of convergence we will replace (7) by the

stronger condition

t~ 1i — tU~ ( t )  I w (B,v) for v ~ 0 (8)

where o(B,v) ~ 0 as ~ ~ for each v > 0 ( the case v — 1 was con-

sidered in [8)).

-v
Lenuua 4. If v 0, then R(T ) ~ N(T)

Proof. Suppose I f )  is a sequence of continuous real valued func-

tions on (0 , 1 1 T h 1
2

1 such that f 5(t )  . t”~~ for t # 0 and t 15(t )  is

uniformly bounded (for example , we may take f5(t) - t ’
~
’
~~ for t ‘ 1/n

and f ( t) — n2~~t for 0 ~ t < 1/n). Let {E
~

} be the resolu tion of

the identity generated by the self-adjoint operator 1. By the

bounded convergence theorem we then have

2 2

T y — I t dE~y — / lim tf ( t ) d E
~

y
0 0 n

11 T h 2 
. -

t im f  tf ( t )dE tY — t im Tf (T)y (S N (T)  .#
n 0 n

We now state a rate o convergence res~& 4t .  The vector

T 1 b wil l  be denoted by x and the error x — x~ by eB .

11
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Theorem 5. If Pb — 
.i..i.V~ where v > 0, then I 1e 8 I I ‘ w (t3,v)I l v i i .

Proof. Since Tx • Pb — TT”w and since ~ — T’~w t N(T?~, we see

that  x — ~~~ Now,

S - U
6

(T)T*b — U
8

(T)T *Pb

- U (i)i~x - U ,(T ) T ”~~v .

The r e f ore eB 
- x - x~ - ~~ (I -

• By the Spectral Mapping Theorem and Radius Formula , we’ the n haVe’

I 1e~ 1 I u (5,v) I iw l I .

In our next result we become more cavalier in our

assumptions on the data .

S Lemma 6. 1! Pb — 
i~ V where v 1, then 11 e 5 11 2 u%(~ ,v— 1)hi Te 5 Ii il v iL

Proof. As in the previous proof we find that x - I I w. Also ,

.5 U
5

(T)T Pb — U
5

(T)T TVW

— T*U
B
(T)T

\
~w.

* - v— i
Therefore e

B 
— x — — I (I  — u

5
(T)T) T w , and

Il e B ii 2 — (e~ ,T*(l — U 5
(T)T)T ~~

1w)

- (Te
5

,( I  - U~ (T)T)T ~~~w) ~ (B , v-i)  I Iw i I I ITC~ I .
~~~

L h r~~2. If Pb — T”w where v 1, then I ie~~i ~
2 

— s t h ,v) ~ ( B , v — I )  I w i  I .
P roof .  In Lemma 6 we s.aW that

C
S 

- T*(I -

12
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therefore

1e
5 

— T*T~ (I — U
0
(T)T)v.

We then have

hI Te 5 I J 2 
— (Te~ ,e8

) • (T”(I — U
8 Ci)I’w ,Te

5
)

i.e., I I Te 5 I i  ~w(8,v).

S 

Substituting into the result of L e a  6 completes the pr oof .#

In the next section we will give a number of examples of

specific computational techniques to which the above results apply .

We have avoided for long enough the problem of polluted

data. We now take up thia question. Suppose that the data b is the

result of measurements so that instead of b we have in our possession

• a corrupted version bC sat isfying l i b  — b a- 11 < c. We operate on the

vector bt to obtain the approximations x~ given by

4 — U
5
(i~)T~b~ .

Let $(B) • su p ( I t U
8

( t ) I :t  a- [0, II T II
2J), and recall that •(B) is

bounded (by (6)).

Lemma 8. I l Tx 8 
— T$iI ia-

- £ - * £

t 
Proof ,  T(x

5 
— x5) — TIJ

5
(T)T (b — b ) ,  therefore

l iTx 8 — 14112 
— (~f(x — 4),x8 

— 4)
— (TU (t)T*(b — ba-),x za- )

— (ru 8(i’) (b — b a-) , T(x~ — 4))

I _ _  

13
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•(8) l lb  — b t H I I T (x 5 — 4)11
< a-~ (~ )iiTx 5 

— 1411.1

Suppose now that  g ( 5) — sup {IU
B
(t)I:t a- L0 , II T II

2I}. We

note that

g(5) ‘ — as 5 -
~ 

— . (9)

Indeed , I f  this were not the case, then there would be a constant L

• such that  h t1~~t ) i  < L for all t and ~~~. But then I tIJB ( t ) I  ‘ Lt 0

4 1 as t -‘ 0 , con t rad ic t ing  (7 ) .

Lenuna 9. I Ix~ — 4 11 ~
Proof. Since x

5 
— 4 — T*U

5
(~ )(b — b a-), we have, by use of

Lemma 8 ,

~~ - 4 I1~ - (X ~~ 
- x~ ,T*U~~~)(b - b e ))

— (T(x
5 

— x~),U5
(’i~)(b — b ’ ) )

s

Suppose now that  Pb — Tv (we could also use the other

hypotheses considered above, but we choose to consider this simple

case to illustrate the ideas). By the triangle inequality we have

l I x — 4 th < l i x  — x5H + h i x ~ 
— 4 th .

Lemma 9 and Theorem 7, then give

Theorem 10. If Pb — 1~ , then

1 

14

I 
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l i x — 411 ~~. (hlw IIw (B , l)w(B,0)) ½ +

The f irst term on the r ight hand side of this inequal ity

goes to zero as ~ -‘ — . However , by (9) and (7) ,  the second term be-

comes infinitely large as 5 -. ~~~ . This illustrates the classic di—

lemea in the numerical treatment of ill—posed problems. Even if

computations are performed exactly , small errors in the data may

- eventually grow and overpower the approximations.

In view of Theorem 10, the question naturally arises as

to whether it is ever possible to obtain convergent approximations

even if the data can be measured as precisely as desired. Specif i—

cally , is there an effective way of choosing a “stopping parameter”

B(a-) such that e5 ( )  -‘ 0 as a- 4 0? This problem of choice of reg—

ularization parameters is of great impor t and still has not been

satisfactorily answered. For the wide class of methods considered

here the question is particularly difficult , for as we shall see in

the next section, the parameter may take on discrete or continuous

values depending upon the specific method under consideration.

t
‘I
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SECTION IV

SPECIFIC METHODS

In this section we will consider some specific choices for the

functions {U
5
(t)) and we will find function. Lu (~,v) which determine

rates of convergence. The index set S in all examples below will be

4 either the set of nonnegative reals or nonnegative integers. In the

:
1 discrete case, the parameter 5 will be denoted by n.

As a first example we consider Showalter ’s integral formula [19]:

T
t
b - Jexp (_u~)T*bdu.

The functions for this example have the form

U
5
(t) — 5 exp(—ut)du

0

and may be motivated in terms of Borel summability [7]. It is not

difficult to see that a function w(B,v) satisfying (8) is given by

w lB,v) — 5 ” (v > 0).
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The choice U
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(t) — (t + 5
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(5 > 0) leads to Tychonov ’s reg—

ularization of order zero [23]. Here one can readily verify that

w(5,v) ’.S ” f o r O < v < 1 .

In order to obtain approximations with this rate for v > 1 we may

use extrapolated regularization [9]. That is, for a given S > 0 we

set
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and define Richardson extrapolants by

— (2~U~~~’~(~) — u~~~’~ ( t ) ) / ( 2 ~ — 1),

— 1,2 

It is not difficult to show (see [9, lemma 2.1]) that for k = 0,1, 2 , ...

t~~
1f 1 - tU~~~~t I  = ‘Tr( ~ ) S

i=0 2 St + 1

Therefore , for the kth extrapolant we may apply Theorem 7 with

= 5
—k—1 k — 1,2,..., to obtain the rate 5—k+½ (see [9, The-

orem 3 . 2] ) .

We now consider some iterative regularization methods. Below,

a will be a parameter satisfying 0 < a < 2 1 1 T h  I _ 2 .

If the fun ctions t J ( t) , n 0,1,2,... are defined by

kU ( t) = a ! (1  — c a t )
k-0

then (6) and (7) are satisfied and one can show that

— tU~(t)I nVtV ll — 
~~~t 1~~~~~~~

’

is uniformly bounded . From this we find that the rate of conver—

gence of the iterative process
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is determined by the function w(n,v) —

Newton ’s method for approximating t 1 leads to the sequence of

func tions def ined by

U0(t) 
— ci, U~~1

(t) — U5(t) (2  — tU ( t) ) .

For this sequence of functions it is not difficult to see that

t”hl — tU (t)l — 0(2 _vn) for v > 0.

Therefore the rate of convergence of the corresponding iterative

method is determined by the function w(n ,v) —

Showalter and Ben—Israel (20) have extrapolated on the previous

method to obtain methods with a higher rate of convergence. For a

S positive Integer p > 2 they define the hyperpower methods in terms

of the sequence

p—i kU (t) — a , U~~ 1(t) — U~(t) 1(1 — tU~ ( t ) )

For these methods the results above may be used to obtain the con—

vergence rate

In (11] tardy considered the approximations

— 0, TXn + X~~ 
- Xn_l + T*b , n — 1,2 , . . .

to Ttb , where T is an unbounded operator. We may apply the results

above in the case of a bounded operator if we define the functions

U~~by
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kU ( t) — I ( t + 1)
k—i

One can verify , as in the first iterative example above, that the

function ~(n ,v) — determines a rate of convergence.

The iterative method

* * -

= I b , ‘~n+l 
x + (I b — TX )/(fl + 2 ) ,

was investigated in [10]. The appropriate functions U are given

by

n k-l
U (t) — ~~ (k + l)~~ ‘IT (1 — t / ( l  + j ) ) .

k—O j—0

- 

- 
This leads to the iterative method

x = T b , X
n+l 

= + (Tb - Tx ) / ( n + 2 ) .

‘ I Following the analysis given in [10] one can show that the rate of

ISI
convergence of this method is governed by the function w(n,v) =

—v(log n) .

-I 
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